Yietal.: Fast Encryption for Multimedia

101

FAST ENCRYPTION FOR MULTIMEDIA
Xun Yi, Chik How Tan, Chee Kheong Siew and Mahbubur Rahman Syed

Abstract— The security of multimedia data is important
for multimedia commerce. The encryption algorithms with
high security, such as DES and IDEA, may not be suitable
to multimedia applications because large data sizes and real
time constraint.

This paper proposes a fast encryption algorithm for mul-
timedia data, called FEA-M. FEA-M is based on Boolean
matrix theory. The plaintext and the ciphertext are 64 x 64
Boolean matrices while the secret key is also a 64 x 64 ma-
trix. The structure of FEA-M is chosen to provide confusion
and diffusion and to facilitate both hardware and software
implementation.

Keywords—Encryption, multimedia, Boolean matrix.

I. INTRODUCTION

HE security of multimedia data is important for mul-

timedia commerce. For example, in video on demand
and video conferencing applications, it is desirable that
only those who have paid for the services can view their
video or movies.

Authentication control mechanisms can be used to se-
cure distributed multimedia applications. However, it is
not enough to secure multimedia data broadcast on wire-
less, satellite or Mbone networks. Multimedia data is still
needed to be encrypted during transmission.

Encryption algorithms can be divided into two basic
classes - secret-key and public-key encryption algorithms.
They have distinct characteristics and are used in different
ways to provide security services.

Secret-key encryption algorithms have been in use in
commercial networks since the early 1970s. The U. S.
Data Encryption Standard (DES)[1] is the first secret-key
encryption algorithm which has had its full specification
published as a public standard. It was developed at IBM
in 1976. It encrypts 64-bit blocks of data with a 56-bit
key. Considering that there is disagreement over whether
a 56-bit key is sufficiently strong, a number of secret-key
encryption algorithms have been proposed to replace DES
in recent years. The International Data Encryption Al-
gorithm (IDEA) [2], developed by Xuejia Lai and Jame
Massey in 1990, is one of them. IDEA encrypts 64-bit
blocks of data with 128-bit key.

Recently, the U. S. National Institute of Standards and
Technology (NIST) is organizing the international compe-
tition in a drive to develop an Advanced Encryption Stan-
dard (AES) to protect sensitive information in federal com-
puter systems. The candidates include Serpent[3], Mars[4],
Rijndael[5], Crypton[6], RC6[7], Twofish[8] and etc. On

Xun Yi, Chik How Tan, Chee Kheong Siew are with the Information
and Communication Institute of Singapore, School of EEE, Nanyang
Technological University, Singapore 639798, e-mail: exyi@ntu.edu.sg.

Mahbubur Rahman Syed is with the Department of Computer and
Information Sciences, 273 Wissink Hall, Minnesota State University,
Mankato, MN 56001, USA.

Contributed Paper

Original manuscript received November 21, 2000

October 2, 2000, NIST announces that Rijndael has been
selected as the proposed AES.

Another class of secret-key encryption algorithm is the
stream cipher which uses a short key to generate the key-
stream to encrypt a digital data stream one bit at a time.

Public-key encryption algorithm provides a radical de-
parture from all that has gone before. For one thing,
public-key algorithms are based on mathematical functions
rather than on substitution and permutation. More im-
portant, it is asymmetric involving the use of two sepa-
rate keys, in contrast to symmetric secret-key algorithm
which uses only one key. The use of two keys has pro-
found consequences in the areas of confidentiality, key dis-
tribution and authentication. RSA[9], developed by Ron
Rivest, Adi Shamir and Len Adleman at MIT in 1978, is
the first public-key encryption algorithm. It encrypts 1024-
bit blocks of data at a time.

State-of-the-art public-key encryption algorithm with
high security transmission performance require high
processing resources when applied to high bit-rates and re-
sult not suitable for modern multimedia communications.
Although existing secret-key encryption algorithms, such
as DES, operate much faster than public-key algorithms,
they are very complicated and involves large computa-
tions. A software DES implementation is not fast enough
to process the vast amount of data generated by multime-
dia applications and a hardware DES implementation (a
set-top box) adds extra costs both to broadcasters and to
receivers.

The challenges of multimedia data encryption come from
two facts. Firstly, multimedia data size usually are very
large. Secondly, multimedia data needs to be processed
in real time. Encryption algorithms with high security
will put great burden on storage space requirement and in-
crease latency. For some commercial applications, such as
pay-per-view, very expensive attack of the encrypted mul-
timedia data are not interesting to adversary [10], because
most multimedia data are different from military secrets
or financial information. For multimedia applications, in-
formation rate is very high, but the information value is
very low. To break such encryption code is much more
expensive than to buy the programs.

The study related to fast video encryption can be found
in [10][11])[12]. These algorithms are only applied to video
data.

In this paper, we propose a fast encryption algorithm for
multimedia data, called FEA-M. The mathematical princi-
ple of FEA-M is founded on Boolean matrix theory. FEA-
M encrypts 64 x 64 Boolean plaintext matrices by a 64 x 64
Boolean key matrix. The structure of FEA-M is chosen to
provide confusion and diffusion and to facilitate both hard-
ware and software implementation. The security of FEA-

0098 3063/00 $10.00 © 2001 IEEE

102

M is based on the difficulty of solving non-linear equation
groups and variable linear equation groups. The following
sections are arranged as follows: Section II introduces some
basic concepts and principle of Boolean matrix. Section
IIT describes the fast encryption algorithm for multime-
dia data, FEA-M. Section IV discusses features of FEA-M.
Section V deals with implementation of FEA-M. Section
VI compares computation complexities of some existing en-
cryption algorithms with FEA-M. Conclusion is drawn in
the last section.

II. BOOLEAN MATRIX
In the following discussion, we consider Boolean ma-

trix set

B = {MIM = (aij)mxﬂ,a,'j S GF(Q),TTL,’I’L (S Z*}

where Z* = {1,2,---} and GF(2) = {0,1} in which addi-
tion and multiplication are defined as follows:

060=0 0n0=0
0Ol=1 0Al1=0
1e0=1 1A0=0
1¢1=0 Inl=1

It is not difficult to verify that the following distributive
property holds.

(adb)Ac=(anc)D(bAc)
aAN(bdc)=(aAb)®(aAc)

for any a,b,c € GF(2).

On basis of the above definitions, Boolean matrix ad-
dition and Boolean matrix multiplication are defined
as follows:

For any A= (aij)an,B = (bij)mxﬂ, C= (Cz‘j)nxl €B,

A®B = (aij)® (bij) = (ai; ® byj) (1)
A-C = (ay) () =(P amnhrer) (2
1<k<n
where
@ airAek; = (ain Aciy) @ (aiz Aezi) @ @ (ain A cnj)
1<k<n

Note that A-C is an m X! matrix. Usually, A-C #C-A
evenifm=n=1

Different from addition and multiplication of general ma-
trices, addition and multiplication of Boolean matrices has
the following property:
Property 1: For any A = (aij)mxn € B, A+ A=0, ie,
—A=A.

The reason is A ® A = (a;; ® a;;) = (0).

Property 2: Suppose A = (aij)mxn, B = (bij)nxi € B,
C=A-B= (Cij)th Bp = (bplybp%"';bpl)v Cq =

IEEE Transactions on Consumer Electronics, Vol. 47, No. 1, FEBRUARY 2001

(cq1rCq2,+sCq) where p=1,2,--- ,nand ¢=1,2,.-- ,m,

then

Cq = By (3)
p€{plagp=1,1<p<n}

Proof: On basis of the multiplication definition of Boolean
matrices, we have

Cqj = @ agk A bij

1<k<!
= (ag1 Abij) @ (ag2 Aboj) ® - ® (agn A bny)
= @ bp .

pe{plagp=1,1<p<n}

Let Py = {plagp = 1,1 < p < n}, Therefore,

Cq = (qua Cq2y° "y qu)

= (@ bp1, @ bp2, -, @ bpt)
pEP, pEP, PEP,

= @(bplabzﬂa'“vbpl)

pEF

= @Bp

PEPq

The inverse of a Boolean matrix is defined as follows:

An n x n Boolean matrix A is invertible (or nonsin-
gular) if there exists an n x n Boolean matrix B such that

A-B = B-A=1I,

where I, is the identity matrix of order n. If A is an in-
vertible matrix, then its inverse is unique. We denote the
inverse of A by A1

In B, there are two elementary row operations

- Interchange two rows.
- Add one row to another.

and two elementary column operations

- Interchange two columns.
- Add one column to another.

An n xn matrix is called a elementary matrix if it can
be obtained from I,, by a single elementary row or column
operation. Same as general matrices, Boolean elementary
matrices have the following properties:

Property 3: Let E be an elementary matrix obtained by
performing an elementary row operation on I,, and F be an
elementary matrix obtained by performing an elementary
column operation on I,,. If the same row operation is per-
formed on an m x n Boolean matrix A, then the resulting
matrix is given by the product E - A. If the same column
operation is performed on A, then the resulting matrix is
given by the product A - F.

Property 4: A square Boolean matrix A is invertible if
and only if it can be written as the product of elementary
matrices.

Yietal.: Fast Encryption for Multimedia

Different from general matrices, Boolean elementary ma-
trices have the following special properties:

Property 5: If F is a Boolean elementary matrix of order
n, then E~! exists and is E.

It is not difficult to prove E - E = I, for any Boolean
elementary matrix E of order n.
Property 6: If a n x n Boolean matrix A = Ey--- Ey -
F; - I, then A™? =1, -FEy-Ey---Ey.

This is because (Ey, - - - Eo-Eqy-I,)-(In-Ev-Eo - Ey) = I,
according to Property 5.

In Property 6, although the results of Ey - I, and I, -
E; are same, the two operations are different. If Fy - I,
represents adding the ith row to the jth row in I,, I, - E5
means adding the jth column to the ith column in I,. If
E; - I, represents interchanging the ith row and the jth
row in I, I, - E1 means interchanging the jth column and
the 7th column in I,,.

IIT. DESCRIPTION OF FAST ENCRYPTION ALGORITHM
FOR MULTIMEDIA (FEA-M)

A. Encryption and decryption model

FEA-M is designed on basis of Shannon secure commu-
nication system model [13] which is shown in Fig.1.

Cryptanalyst
i Decryption P

Ieorith X y,‘zh Destination,

algorithm | pyplic Channel | 2'80Fi0RM

Key
source

Shannon secure communication system model

Message

source

Fig.1.

With the message P and the encryption key K as input,
the encryption algorithm forms the ciphertext C. We can
write this as

C = Ek(P) (4)

The intended receiver, in possession of the key, is able to
invert the transformation:

P = Dg(C) (5)

In Fig.1, the encryption and decryption keys may be
different. However, the decryption key should be easily
determined by the encryption key.

An opponent, observing C' but not having access to K or
P, may attempt to recover P or K or both P and K. It is
assumed that the opponent knows the encryption algorithm
E and decryption algorithm D.

In the following discussion, we only consider n x n
Boolean matrices when n = 64. Suppose the sender and
the receiver share a secret n X n invertible master key
matrix K, in which the number of elements with value 1

103

is around ﬂ; Therefore, the key length of FEA-M is 4096
bits.

The description of master key matrix distribution is out
of the arrange of this paper. Public-key encryption algo-
rithm RSA may be used to distribute the master key ma-
trix.

B. Key hierarchy
The key hierarchy of FEA-M is depicted in Fig.2.

Initial matrices,

Session key matrices

Fig.2. Key hierarchy of FEA-M

As shown in Fig.2, the key hierarchy of FEA-M has two
levels. On the top is one master key matrix. On the bottom
are initial matrices and session key matrices. Master key
matrix is used to protect initial matrices and session key
matrices. Initial matrices and session key matrices are used
to protect transmission multimedia data.

C. Session key matriz generation

Initially, the sender is required to generate session key
in order to encrypt plaintext message. Session key is an
invertible matrix of order n, denoted as K.

The session key matrix K and its inverse K~! can be
randomly generated from the identity matrix I,, in the fol-
lowing program:

(1) Leti=1 &IldK:[:KQ:In

(2) Write the n x 2n matrix that consists of K on the
left and K, on the right to obtain (K| K>2).

(3) Randomly choose integers 41,%2,---,iz—1 from the
set S; = {1,2,---,n} —{i}.

(4) On the left, add the ith row to the i1th row, 4ath
Tow, - --, 42 _1th row respectively in K, to produce a
new matrix KJ.

(5) On the right, add the ¢1th column, igth column, - -,
iz_1th column to the ith column respectively in K»
to produce a new matrix Kj.

(6) Let i =i+1, K3 = K} and Ky = K}. If i < n, then
go to (3).

(7) Randomly choose integers ¢ from the set S; =
{1,2,---,n -1}

(8) On the left, interchange the nth row and the ith row
in Kl.

(9) On the right, interchange the ith column and the
nth column in Ks.

(10) Finally, output matrices K7 and Ko.

On basis of Property 3,

K, =
Ky =

Ey---Ey-Ey-1,
I, -Ey-Es---Ej

104

According to Property 4, K7 is an invertible Boolean
matrix. Based on Property 6, K;' = K».

The above program can be also used to generate master
key matrix Ky and its inverse.

D. Initial matriz generation

Besides the session key matrix, the sender is required
to randomly generate an initial Boolean matrix V5. Each
element of Vj is randomly chosen from GF'(2) so that the
distribution of 0 and 1 in V; obeys the uniform distribution.
In view of it, the number of the elements with value 1 in

. 2
Vo is around %,

E. Session key and initial matrices distribution

By using the master key matrix Ko, the inverse of the
session key matrix K and the initial matrix V5 can be dis-
tributed from the sender to the receiver in the following
way:

At the sender side, she computes

Ko-K_l-Ko
KoV Ko

K* =
VY =

(6)
(7)
then sends (K™, V*) to the receiver.

At the receiver side, he recovers K~! and Vp by comput-
ing

K1 K71 K K}
Vvo — Kd—l B 740 Ko—l

(®)
9

F. Encryption and decryption

At first, the plaintext message should be divided into a
series of blocks Py, Ps, - - -, P, with same length n?. If the
length of the last block P is less than n?, we need append
some 0Os in it so that its length is right n2. The n? bits of

each block are arranged as a square matrix of order n.
Py Py P;

!

s Y

K- Fi K—» F2 K —» F;
v Y

Vo o ——P

Ci

K~1—% F

-

Py Py P;

Fig.3. Illustration of encryption and decryption process

[EEE Transactions on Consumer Electronics, Vol. 47, No. 1, FEBRUARY 2001

The encryption and decryption processes are depicted in
Fig.3, in which the function F; means
X

l

l

Y- X.Y?
Fig.4. Illustration of the function F;

Each plaintext matrix P; is encrypted into ciphertext C;
in the following way:

i = K- (PoV) KoV (10)
Cz = K(P2@01)K2@P1
C; = K- (P+Ci1) - K'®P_, (11)

Each corresponding ciphertext matrix C; is decrypted
into plaintext F; in the following way:

P = K'.(CieWV)-K'eW (12)
P, = K_l‘(CQ@Pl)'K_2®CI
P, = K'(CioP.)-K'eC;y (13)

G. Update of session key matriz

For the sake of security, the session key matrix should
be updated regularly during the encryption of multimedia
data. The update of session key matrix could be based on
how important the multimedia contents is. If the multi-
media contents is very important, the session key matrix
should be updated frequently. For the multimedia contents
with very low value, only one session key may be enough.
Therefore, in FEA-M, the update of session key matrix is
flexible.

The session key matrix is updated in the following pro-
gram:

(1) The sender randomly generates a Boolean matrix in

the same way as generating the initial Boolean matrix
Vo and replaces the first row with 64-bit special code
which represents session key update to obtain V. Then
she encrypts V into ciphertext

= K- (V+C)-K'@Ph

and sends C7, ; to the receiver.
(2) The receive recovers V from Cj,; by computing

V = K1 (CHi+P) K aC;

and detects the 64-bit special code for session key up-
date in V.

Yietal.: Fast Encryption for Multimedia

(3) The sender randomly generates a new session key
matrix K’ and its inverse. Then she sends

K* = K()‘K/—I-Ko

to the receiver.
(4) The receiver recovers K'~! from K* by computing

K/—l — K(—)—l LKt KO—I

(5) Both the sender and the receiver replace the first row
of V with

Vi = ® v
je{jlk1;=1,1<5<n}

(14)

where (k11, k12, -, k1n) is the first row of the old ses-
sion key matrix K and V; denotes the jth row of V.

After update of session key, the plaintext matrices after
P, are encrypted by the new session key matrix K’ in the
following way:

Cit1
Cit2

K - (P1+V)-K'+V
K' (P2 +Cit1) - K? + Py

The ciphertext matrices are decrypted by K'~! as follows:

L (Cip1 +V) KTV
' (Ciza + Pip1) - K" 2 4+ Ciya

Py =
Pito

IV. FEATURES OF FEA-M
A. Similarity of encryption and decryption

In order to facilitate implementation, encryption and de-
cryption algorithms should satisfy similarity of encryption
and decryption.

The similarity of encryption and decryption means the
decryption is essentially the same process as encryption,
the only difference being that different key subblocks are

used.

In FEA-M, suppose Py, P, - - -, P; have been transformed
to Cy,Cs,---,C; with K according to Formulae (10) and
(11). Let us see what will happen when the same transfor-
mations with K ~! are performed on Cy,C3,---,C;.

Kt (C1+W) K+ W
= K7 (K-(PL+Vo)-K+Vo+Vo) - K™'+Vp
(PL+Vo)+ Vo
= P

I

K (Co+P) - K24 Cy
= K (K-(P,+C1)-K*+Pi+P)-K24+C
= (P+C1)+Ch
= P
K1 (Ci4+Py) K +Ciq
= K1 (K- (P+Ci—1) - K'+P_1+P_1)- K" +Ciy
(P +Ci—1) + Ci1
= F

105

The above results show that the encryption and decryp-
tion process of FEA-M are same except that the different
key matrix are used. Therefore, FEA-M satisfies the simi-
larity of encryption and decryption.

B. Diffusion and confusion

Confusion [13][14] means that the ciphertext depends on
the plaintext and key in a complicated and involved way.
The diffusion requirement on a cipher is that each plaintext
bit should influence every ciphertext bit and each key bit
should influence every ciphertext bit [13][14]. Confusion
and diffusion are two basic design criteria of secret-key en-
cryption algorithm.

In FEA-M, suppose K = (kim)nxn, V = (Vim)nxn, Ps =
P nxny Ci = (62)pxn and Kt = (k{),n. According
to Formulae (10) and (11), we know

01(1173 = (@ klh/\ @ ((p(1)®vhg)/\k9m))®vim (15)

1<h<n 1<g<n
For ¢ > 2,
D = (P mmnr P @D e Ak @l
1<h<n 1<g<n

= (D D kwnkihn@ryocy V) @i 16

1<h<n 1<g<n

In Equation (15), although c() only depends on the lth
row and the mth column of key matrix K, it does not
matter because a random bit vy, is involved

From Equation (16), we can see that c;,, ® depends on
all elements of plaintext matrix P; and previous ciphertext
C;~1. In turn, all elements of C;_; rely on all elements
of key matrix K. Therefore, c(’) also depends on all ele-
ments of K. It means FEA-M satlsﬁes the diffusion design
criterion if we do not consider the first encryption.

In addition, we can find that the relationship between

(1) and each element of K is non-linear. Although the re-
lamonshlp between c(Y and each element of P; is linear, it is

variable with the introduction of ks(,m where g = 1,2, -
Hence, FEA-M satisfies the confusion design crlterlon.

V. IMPLEMENTATION OF FEA-M

Since FEA-M satisfies the similarity of encryption and
decryption, we only need to implement the encryption al-
gorithm of FEA-M. In FEA-M, the most time-consuming
operation is the multiplication of Boolean matrices. In the
following discussion, we will study software and hardware
implementation of Boolean matrix multiplication.

A. Software implementation

Suppose A = (Ai)nxl Where Ai = (ail,aig,n-,ain),
B = (Bj)nx1 where B; = (bj1,bj2,--+,bjn) and C =
A- B = (Cg)nx1 where Bi = (b1, br2, -+, ben). According

to Property 2, the product C of A and B can be computed
in the following program:

106

(1) Start

(2) i=1.
3)j=15=0.

(4) If Az Al = 1, S: S@Bn_j+1.

(B) j=4+1, A; >> 1 (iLe., A; is shifted 1 bit to the
left).

(6) If j < n, go to (3).

(7) C;=8,i=1i+1.

(8) If i < n, go to (2).

(9) Halt.

The above procedure can be depicted in Fig.5.

Fig.5. Software implementation of Boolean matrix
multiplication

Because only 64-bit XOR operation is used in the above
algorithm, it can be implemented efficiently in 64-bit
Processor.

B. Hardware implementation

The Boolean matrix multiplication can be also imple-
mented by using linear feedback shift register (LFSR).
In our hardware implementation, 129 64-bit LFSRs are
needed to construct the Boolean matrix multiplication ma-
chine shown in Fig.6. The shift rate in the upper 64 64-bit
LFSRs is 64 times of that in the lower 64 64-bit LFSRs.
The lowest LFSR in the dashbox has the same rate as the
upper 64 64-bit LFSRs.

The procedure of multiplication is as follows:

(1) Fill in elements of Boolean matrix A = (@4;)nxn in
the upper 64 64-bit LFSRs by row.

(2) Fill in elements of Boolean matrix B =
the lower 64 64-bit LFSRs by column.

(3) The first stage content of each upper LFSR and
corresponding first stage content of lower LFSR is
ANDed.

(4) All the above results are XORed and sent to the last

stage of the lowest LFSR.

(bij)nxn in

IEEE Transactions on Consumer Electronics, Vol. 47, No. 1, FEBRUARY 2001

(5) All upper LFSRs shift one position down each time.
All lower LFSRs shift one position up only when the
upper LFSRs shift the multiply of 64 times.

(6) Each 64 times when the lowest LESR shifts to the
right, the content of each stage is passed to the last
stage of the lower 64 64-bit LFSRs.

After the 64 64-bit lower LFSRs shift up 64 times, the
results in them are the product of A and B by column.

VR
A\

(oY

Fig.6. Hardware implementation of Boolean matrix
multiplication

VI. COMPUTATION COMPLEXITY COMPARISON

In the following comparison, the target machine opera-
tions are micro-operations that is implemented in hardware
in one clock cycle, with the exceptions of fetching data from
cache/memory, and multiplication. These last two opera-
tions were assigned a latency of four clock cycles. Adequate
atomic ALU data widths were assumed to be supported, up
to 64 bits, at the ideal latency. Full pipelining of the fetch
and multiply operations was expected. Multiple operations
can be issued in a vector, VLIW, or data-flow manner.

The total number of micro-operations that are required
in some encryption algorithms, counting vector operations
as a single micro-operation, was investigated in [15]. The
results are summarized in Tab.1l for the 128-bit key and
128-bit block size.

Cipher | Micro-operations
Rijndael 616
Crypton 736
Twofish 600
RC6 296
MARS 528
Cast256 824
Serpent 1328

Tab.1. Total number of micro-operations for the 128-bit
key and 128-bit block size

Yietal.: Fast Encryption for Multimedia

As far as FEA-M is concerned, under the assumption
that 0 and 1 of matrices obey uniform distribution, one en-
cryption on 64 x 64 plaintext needs 64 x 2 XOR operation,
two Boolean matrix multiplication operations and one ex-
ponent operation. In fact, K* = K*~! . K. Therefore, the
exponent operation K* can be transferred into one multi-
plication of K*~! and K if the previous exponent K*~! is
stored.

On basis of Property 2, one Boolean matrix operation
needs 62—4 - 64 XOR operations. Therefore, for 128-bit block
size, the total number of micro-operations is

(3x 8464 12 64)-128

64x64 =196

It means FEA-M encrypts one bit with about 1.5 XOR
operations. FEA-M is much faster encryption algorithm
than others listed in Tab.1.

VII. CONCLUSION

We have developed a fast encryption algorithm for mul-
timedia data, FEA-M. It encrypts 512 bytes of data with
a 512 bytes of key at a time. Our cryptanalysis has shown
that FEA-M satisfies basic confusion and diffusion design
criteria. The structure of FEA-M facilitates both hardware
and software implementations. Computation complexity
comparison has shown that FEA-M is much faster encryp-
tion algorithm than others. It needs only about 1.5 XOR
operations to encrypt one bit plaintext.

We believe FEA-M can be used to secure many multi-
media applications, such as digital video and audio trans-
missions.

Multimedia data security is challenging. We hope inter-
ested parties can offer their valuable comments on FEA-M.

(2
(3]

(5]
(6]
(7
(8]

(10}

(14

{12]
(13]
[14]

[15]

107

REFERENCES

“Data encryption standard”, FIPS PUB 46, National Bureau of
Standards, Washington, D.C., Jan. 1997.

X. Lai, “On the design and security of block cipher”, Konstanz,
Germany: Hartung-Gorre, 1992.

R. Anderson, E. Biham, and L. Knudsen, “Serpent: A Proposal
for the Advanced Encryption Standard”, 1998. AES submission.
C. Burwick, D. Coppersmith, E. DAvignon, R. Gennaro, S.
Halevi, C. Jutla, S. M. Matyas Jr., L. OConnor, M. Peyravi, D.
Stafford, and N. Zunic, “MARS - a candidate cipher for AES”,
IBM Corporation, June 1998. AES submission.

J. Daernen and V. Rijmen, “AES Proposal: Rijndael”, June
1998. AES submission.

C. H. Lim, “CRYPTON: A New 128-bit Block Cipher”, 1998.
AES submission.

R. L. Rivest, M.J.B. Robshaw, R. Sidney, and V. L. Yin, “The
RC6 Block Cipher”, 1998. AES submission.

B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N.
Ferguson, “Twofish: A 128-Bit Block Cipher”, June 1998. AES
submission.

R. Rivest, A. Shamir, L. Adleman, “A method for obtaining
digital signatures and public key cryptosystem”, Communication
of ACM, Feb. 1978.

B. Macq, J. Quisquater, “Cryptology for digital TV broadcast-
ing”, Proc. of IEEE, 83(6), 1995.

L. Tang, “Methods for encrypting and decrypting MPEG video
data efficiently”, Proc. of the ACM Multimedia’96, Boston, Nov.
1996.

C. Shi, B. Bhargava, “Light-weight MPEG video encryption al-
gorithm”, Proc. of Multimedia’98, Jan. 1998.

C. E. Shannon, “Communication theory of secret systems”, Bell
Syst. Tech. J., Vol.28, 1949.

J. L. Massey, “An introduction to contemporary cryptology”,
Proc. IEEE, Vol.76, No.5, May 1988.

G. Graunke, “Yet another performance analysis of the AES can-
didates”, http://csrc.nist.gov/encryption/aes/roundl /pubcm-
nts.htm.

